Deteksi Kantuk Melalui Citra Wajah Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM) dan Klasifikasi Support Vector Machine (SVM)

Authors

  • Noni Charimmah Teknik Telekomunikasi, Telkom University
  • Ervi Lanovia Teknik Telekomunikasi, Telkom University
  • Koredianto Usman Teknik Telekomunikasi, Telkom University
  • Ledya Novamizanti Teknik Telekomunikasi, Telkom University

Keywords:

Kantuk, face detection, Viola-Jones, Gray Level Cooccurrence Matrix, Support Vector Machine

Abstract

Tingginya angka kecelakaan di jalan raya menuntut perkembangan teknologi terkini agar dapat mencegah angka tersebut meningkat. Kecelakaan akibat pengendara yang mengantuk merupakan penyumbang angka kecelakaan tertinggi. Salah satu pencegahan terhadap kecelakaan di jalan raya akibat mengantuk adalah dengan membuat suatu sistem deteksi kantuk melalui pengolahan citra. Sistem tersebut mengolah video yang di rekam untuk mengambil bagian mata dan mulut. Video diambil per-frame dan dilakukan face detection, eye detection, dan mouth detection. Proses tersebut dilakukan dengan menggunakan algoritma Viola-Jones. Setelah diperoleh citra mata dan mulut, dilakukan ekstraksi ciri menggunakan metode Gray Level Co-occurrence Matrix (GLCM). Keluaran dari proses ekstraksi yaitu ciri saat mata dan mulut terbuka atau tertutup. Selanjutnya, klasifikasi keadaan mata dan mulut menggunakan Support Vector Machine (SVM). Sistem akan menghasilkan peringatan ketika pengendara terdeteksi mengantuk.

Downloads

Download data is not yet available.

References

Adminkorlantas, “Mabes Polri : Angka Kecelakaan Pemudik 2015 Turun,” NTMC Polri, 2015. [Online]. Available: http://ntmcpolri.info/home/mabes-polri-angka-kecelakaanpemudik-2015-turun/. [Accessed: 23-Feb-2019].

I. Gupta, N. Garg, A. Aggarwal, N. Nepalia, and B. Verma, “Real-Time Driver’s Drowsiness Monitoring Based on Dynamically Varying Threshold,” 2018 11th Int. Conf. Contemp. Comput. IC3 2018, pp. 1–6, 2018.

P. Mohanaiah, P. Sathyanarayana, and L. Gurukumar, “Image Texture Feature Extract Approach,” Int. J. Sci. Res. Publ., vol. 3, no. 5, pp. 1–5, 2013.

S. Lefkovits, L. Lefkovits, and S. Emerich, “Detecting the eye and its openness with Gabor filters,” 2017 5th Int. Symp. Digit. Forensic Secur. ISDFS 2017, 2017.

M. Kahlon and S. Ganesan, “Driver Drowsiness Detection System Based on Binary Eyes Image Data,” IEEE Int. Conf. Electro Inf. Technol., vol. 2018–May, pp. 209–215, 2018.

J. J. Yan, H. H. Kuo, Y. F. Lin, and T. L. Liao, “Real-time driver drowsiness detection system based on PERCLOS and grayscale image processing,” Proc. - 2016 IEEE Int. Symp. Comput. Consum. Control. IS3C 2016, pp. 243–246, 2016.

B. Bhowmick and K. S. C. Kumar, “Detection and classification of eye state in ir camera for driver drowsiness identification,” ICSIPA09 - 2009 IEEE Int. Conf. Signal Image Process. Appl. Conf. Proc., pp. 340–345, 2009.

C. N. Rao, S. S. Sastry, K. Mallika, H. S. Tiong, and K. B. Mahalakshmi, “Co-Occurrence Matrix and Its Statistical Features as an Approach for Identification Of Phase Transitions Of Mesogens,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 2, no. 9, pp. 4531–4538, 2013.

M. M. Sani, K. A. Ishak, and S. A. Samad, “Evaluation of Face Recognition System Using Support Vector Machine,” SCOReD - 2009 IEEE Student Conf. Proc., pp. 2009–2011, 2009.

P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” 2001.

Y.-Q. Wang, “An Analysis of the Viola-Jones Face Detection Algorithm,” Image Process. Line, vol. 4, pp. 128–148, 2014.

C.P. Riesmala, A. Rizal, L. Novamizanti, Pengenalan Motif Batik Dengan Analisis Struktur dan Warna Pada Citra Digital, Skripsi Sarjana pada IT Telkom Bandung, 2012.

Michael V. Boland, “Haralick texture features,” murphylab, 1999. [Online].Available:http://murphylab.web.cmu.edu/publications/boland/boland_node26.htm l. [Accessed: 15-Mar-2019].

I. The Mathworks, “Properties of gray-level co-occurrence matrix,” MathWorks. [Online].Available:https://www.mathworks.com/help/images/ref/graycoprops.html. [Accessed: 15-Mar-2019].

IPGS Pradnyana, L Novamizanti, H Fauzi , Perancangan Sistem Pendeteksi Genangan Air Potensi Perkembangbiakan Nyamuk Melalui Foto Citra Udara Dengan Metode Gray Level Co-occurrence Matrix (GLCM), eProceedings of Engineering 2 (2), 2015.

P.D. Wananda, L. Novamizanti, R.D Atmaja, Sistem Deteksi Cacat Kayu dengan Metode Deteksi Tepi SUSAN dan Ekstraksi Ciri Statistik, ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi & Elektronika, Vol 6, No 1, 2018.

I. The Mathworks, “Support Vector Machines for Binary Classification,” MathWorks.[Online].Available:https://www.mathworks.com/help/stats/support-vectormachines-for-binary-classification.html. [Accessed: 15-Mar-2019]

Published

20-03-2020

How to Cite

[1]
N. Charimmah, E. Lanovia, K. Usman, and L. Novamizanti, “Deteksi Kantuk Melalui Citra Wajah Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM) dan Klasifikasi Support Vector Machine (SVM)”, SENTER, pp. 174–185, Mar. 2020.

Viewed

Abstract 817 times
pdf (Bahasa Indonesia) 746 times