Menuju Condition Based Maintenance yang Cerdas: Systematic Review atas Integrasi IoT dan Mesin Learning pada Alat Berat

Authors

  • Aditya Kurniawan Akademi Teknik Alat Berat Indonesia
  • Kholilatul Wardani Politeknik Kota Malang
  • Eki Ahmad Zaki Hamidi UIN Sunan Gunung Djati Bandung

Keywords:

Condition-Based Maintenance, Internet of Things, Machine Learning, Alat Berat, Pemeliharaan Prediktif, Pemeliharaan Cerdas

Abstract

Condition-Based Maintenance (CBM) telah merevolusi manajemen aset dengan memungkinkan pengambilan keputusan berbasis data secara real-time, khususnya di sektor alat berat. Integrasi teknologi Internet of Things (IoT) dan algoritma Machine Learning (ML) membuka peluang baru untuk diagnosis prediktif, deteksi anomali, dan optimasi pemeliharaan pada unit alat berat. Artikel ini menyajikan Systematic Literature Review (SLR) menggunakan metode PRISMA-based 4-step selection mengenai bagaimana IoT dan ML diintegrasikan secara arsitektural dan fungsional dalam sistem CBM untuk alat berat, dengan mengidentifikasi tren utama, tantangan, dan kesenjangan penelitian. Sebanyak 130 sumber ilmiah yang diterbitkan antara tahun 2015–2025 dianalisis secara sistematis, menyoroti kemajuan dalam penerapan sensor, pemrosesan data real-time, pemodelan prediktif, dan strategi pemeliharaan terdesentralisasi. Tantangan utama yang ditemukan mencakup 1) kualitas data, 2) keterbatasan skalabilitas, 3) adaptabilitas model, serta 4) keamanan siber. Arah penelitian di masa depan diusulkan dengan menekankan pentingnya preprocessing, edge computing, skema pembelajaran ML secara online, pendekatan model hibrid untuk ML, dan infrastruktur IoT yang aman. Studi ini bertujuan untuk memberikan pandangan bagi peneliti dan praktisi dalam memahami pengembangan ekosistem CBM yang tangguh, terukur, dan cerdas khususnya untuk aplikasi industri berat.

Downloads

Download data is not yet available.

References

K. Wardani, A. Kurniawan. "Enhancing Heavy Equipment Maintenance with Artificial Intelligence," IEEE, 2023.

P. Kumar, R. Tiwari. "A review: multiplicative faults and model-based condition monitoring strategies for fault diagnosis in rotary machines," Journal of the Brazilian Society of Mechanical Sciences and Engineering (Springer), 2023.

S. Al Bardan. "Advanced Failure Classification Models for Construction Machinery," DiVA Portal, 2025.

A. Kolokas, P. Mallioris, M. Koutsiantzis, C. Bialas. "Effective Machine Learning Solution for State Classification and Productivity Identification," MDPI, 2024.

R. De La Fuente, L. Radrigan, A.S. Morales. "Enhancing Predictive Maintenance in Mining Mobile Machinery through a Hierarchical Inference Network," IEEE Access, 2025.

L. Zhou, H. Zhang. "Smart Predictive Maintenance of Construction Equipment with IoT Sensors and Deep Learning," Automation in Construction, 2022.

T. Nguyen, M. Park. "Real-Time Monitoring System for Heavy Equipment Fault Detection using IoT and Deep Learning," Sensors, 2023.

V. Klathae, P. Ruangchoengchum. "The Predictable Maintenance 4.0 by Applying Digital Technology," Review of Integrative Business and Economics Research, 2019. <4>

M. Rahman, A. Islam. "Big Data Analytics in Condition Monitoring of Heavy Industrial Machinery," Procedia Manufacturing, 2020.

F. Martins, J. Costa. "IoT-Based Predictive Maintenance for Construction Heavy Machinery," Automation in Construction, 2019.

M. Horrell, L. Reynolds. "Data Science in Heavy Industry and the Internet of Things," Harvard Data Science Review, 2020.

C. Song, S. Liu, G. Han, P. Zeng, H. Yu. "Edge-intelligence-based condition monitoring of beam pumping units under heavy noise in Industrial IoT for Industry 4.0," IEEE Internet of Things Journal, 2022.

J. Becker, F. Müller, T. Frank. "Federated autoencoder for IIoT," Journal of Industrial Information Integration, 2022.

G. Elvis, A. Habeeb. "Developing a Predictive Maintenance Model Using IoT and Machine Learning," ResearchGate, 2025.

E. Temer, H.J. Pehl. "Moving Toward Smart Monitoring and Predictive Maintenance of Downhole Tools Using IIoT," OnePetro Conference, 2017.

M. Hossain, S. Ahmed. "A Comparative Study of Machine Learning Techniques for Heavy Equipment Fault Prediction," MDPI Machines, 2023.

E. Regnier, B. Hudgens. "Condition-Based Maintenance Implementation and Potential in USMC Ground Transport," DTIC, 2022.

A. Mohammed, H. Rahman, S. Omar. "ML-based CBM for electrical motors," Engineering Applications of Artificial Intelligence, 2023.

J. de la Fuente, R. Cañas, H. López. "TinyML for mining maintenance," Proc. IEEE Industrial Electronics Conf., 2024.

P. Odeyar, D.B. Apel, R. Hall, B. Zon, K. Skrzypkowski. "A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining," ResearchGate, 2022.

V. Klathae, P. Ruangchoengchum. "The Predictable Maintenance 4.0 by Applying Digital Technology," Review of Integrative Business and Economics Research, 2019.

S.D. Siregar. "Implementation of Maintenance Strategy and Asset Health Monitoring on Underground GBC Production Loader," ITB Digilib, 2023.

E. Regnier, B. Hudgens. "Condition-Based Maintenance Implementation and Potential in USMC Ground Transport," DTIC, 2022.

Downloads

Published

04-12-2025

How to Cite

[1]
A. Kurniawan, K. Wardani, and E. A. Z. Hamidi, “Menuju Condition Based Maintenance yang Cerdas: Systematic Review atas Integrasi IoT dan Mesin Learning pada Alat Berat ”, SENTER, vol. 10, pp. 148–159, Dec. 2025.