Simulasi Efisiensi Buck Converter Asynchronous dan Synchronous Berdasarkan Variasi Nilai Duty Cycle dan Beban
Keywords:
Buck Converter, Asynchronous, Synchronous, EfisiensiAbstract
DC-DC Converter yang umum digunakan adalah buck converter dengan kemampuannya untuk menurunkan tegangan masukan ke beberapa level tegangan keluaran tergantung terhadap nilai duty cycle yang diberikan kepada rangkaian. Buck converter menggunakan metode switching dalam pengoperasiannya dan memiliki efisiensi konversi daya yang lebih baik daripada regulator linear. Topologi utama pada aplikasi rangkaian buck converter adalah asynchronous buck converter dan synchronous buck converter. Perbedaan kedua topologi terletak pada komponen low-side switch, topologi asynchronous akan memanfaatkan dioda sedangkan topologi synchronous memanfaatkan MOSFET. Kedua jenis topologi memiliki keunggulan dan kekurangannya masing masing dari sisi efisiensi maupun kompleksitas penyusunan rangkaian. Nilai efisiensi dari kedua topologi bergantung pada kondisi operasi rangkaian. Dibutuhkan kondisi operasi yang sesuai dalam aplikasi rangkaian sehingga dapat menghasilkan nilai efisiensi yang optimal. Pada penelitian ini, telah disusun dan dijalankan simulasi rangkaian buck converter dengan topologi asynchronous dan topologi synchronous pada perangkat lunak LTspice. Hasil simulasi dianalisis performanya, khususnya aspek efisiensi konversi rangkaian dalam beberapa kondisi operasi converter. Dari hasil penelitian didapatkan kedua jenis topologi memiliki efisiensi yang cenderung lebih baik ketika ditingkatkan arus operasinya, dimana rangkaian synchronous memiliki efisiensi yang lebih baik pada duty cycle rendah dan pada duty cycle yang tinggi kedua topologi memiliki efisiensi yang hampir serupa.
One kind of DC-DC converter that have been widely used is a buck converter with its ability to lower the input voltage to a desired output voltage depending on the value of the duty cycle given to the circuit. Buck converter will utilize switching method on its operation and will have a better efficiency than a linear regulator. The main topology in a buck converter application is an asynchronous buck converter and synchronous buck converter. The difference between the two topologies lies in its use of component in the low side switch, asynchronous buck converter make use of a diode as the low side switch whereas synchronous buck converter uses a MOSFET. These two topologies have its own advantages and
disadvantages from an efficiency point of view or from a design complexity. The efficiency value of these two topologies will rely on its operating condition. To achieve an optimal efficiency value, the right operating condition must be met. In this research, buck converters with asynchronous and synchronous topology were designed and simulated using LTspice software. The simulation results were analyzed, especially in the aspect of power conversion efficiency. From the results obtained in this research, the two topologies have a better overall efficiency in a higher current operation, with the synchronous toplogy have a better overall efficiency at lower duty cycle range and at the higher duty cycle range, the two topologies have an almost similar overall efficiency.
Downloads
References
Switch Mode Power Supply and Switching Regulators.” [Online]. Available: https://www.electronics-tutorials.ws/power/switch-mode-power-supply.html. [Accessed:26-Apr-2022].
T. Abuzairi, W. W. A. Ramadhan, and K. Devara, “Solar Charge Controller with Maximum Power Point Tracking for Low-Power Solar Applications,” Int. J.Photoenergy, vol. 2019, 2019, doi: 10.1155/2019/5026464.
H. Eraydin and A. F. Bakan, “Efficiency Comparison of Asynchronous and SynchronousBuck Converter,” Proc. - 2020 6th Int. Conf. Electr. Power Energy Convers. Syst. EPECS 2020, pp. 30–33, Oct. 2020, doi:10.1109/EPECS48981.2020.9304966.
H. Zomorodi and E. Nazari, “Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter,” Int. J. Robot. Control Syst., vol. 2, no. 1, pp.79–86, Feb. 2022, doi: 10.31763/IJRCS.V2I1.538.
“LTspice Simulator | Analog Devices.” [Online]. Available:https://www.analog.com/en/design-center/design-tools-and calculators/ltspicesimulator.html. [Accessed: 22-Sep-2022].
F. Badr, “The Effect Of Resistive Load Variations On The Open-Loop Control Of DcDc Buck Converter,” J. Eng. Dev., vol. 17, no. 6, 2013.
A. W. N. Husna, S. F. Siraj, and M. H. Mat, “Effect of load variations in DC-DC converter,” Proc. - CIMSim 2011 3rd Int. Conf. Comput. Intell. Model. Simul., pp. 394–398, 2011, doi: 10.1109/CIMSIM.2011.78.
B. Hauke, Basic Calculation of a Buck Converter′s Power Stage. .
S. Solutions, “AN486: High-Side Bootstrap Design Using ISODrivers in Power
DeliverySystems.”
Infineon, “IR2184 ( 4 )( S ) & (PbF) Typical Connection HALF-BRIDGE DRIVER Features.”
“IR2117 - Infineon Technologies.” [Online]. Available: https://www.infineon.com/cms/en/product/power/gate-driver-ics/ir2117/. [Accessed: 04-Apr-2022].
Z. Iqbal, U. Nasir, M. T. Rasheed, and K. Munir, “A comparative analysis of synchronous buck, isolated buck and buck converter,” 2015 IEEE 15th Int. Conf.Environ. Electr. Eng. EEEIC 2015 - Conf. Proc., pp. 992–996, Jul. 2015, doi:10.1109/EEEIC.2015.7165299.
Y. Bai, A. Q. Huang, D. S. H. Guo, Q. Lu, and J. S. Lai, “Optimization of Power MOSFET for High-Frequency Synchronous Buck Converter,” 2003.