Pengujian Akurasi Posisi Sudut Sistem Kemudi Kendaraan Otonom dengan Unity Feedback System

Authors

  • Muhammad Haniff Jurusan Teknik Elektro Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Jl. A.H. Nasution Nomor. 105A, Cibiru, Bandung, Indonesia
  • Hendri Maja Saputra Pusat Riset Tenaga Listrik dan Mekatronik Badan Riset dan Inovasi Nasional Jl. Cisitu No. 21/154D Sangkuriang – Bandung 40135, Indonesia
  • Eki Ahmad Zaki Hamidi Jurusan Teknik Elektro Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Jl. A.H. Nasution Nomor. 105A, Cibiru, Bandung, Indonesia
  • M Nurohman Firdaus Pusat Riset Tenaga Listrik dan Mekatronik Badan Riset dan Inovasi Nasional Jl. Cisitu No. 21/154D Sangkuriang – Bandung 40135, Indonesia
  • Saip Ardo Pratama Jurusan Teknik Elektro Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Jl. A.H. Nasution Nomor. 105A, Cibiru, Bandung, Indonesia

Keywords:

Absolute rotary encoder, Kendali Sistem Kemudi, Motor BLDC, Kendaraan Otonom Roda Tiga, Pengaturan Posisi Sudut, Unity Feedback System

Abstract

Perkembangan kendaraan otonom sebagai solusi dari transportasi ramah lingkungan saat ini berkembang cukup cepat. Penelitian ini berfokus pada sistem kemudi loop tertutup dengan unity feedback system untuk kendaraan otonom roda tiga menggunakan Motor BLDC dan Absolute Rotary Encoder. Rotary encoder memberikan feedback perubahan sudut dari kemudi kendaraan otonom. Kendali kemudi yang diusulkan pada penelitian ini ialah dengan menentukan perubahan sudut yang diperlukan untuk kendaraan otonom. Perbandingan sudut yang diinginkan dengan feedback nilai sudut dari rotary encoder dilakukan agar didapatkan hasil yang akurat. Pada penelitian ini dilakukan pengujian dengan 3 variasi kecepatan rotasi putaran kemudi yakni 20 PWM, 50 PWM, dan 100 PWM. Variasi kecepatan diberikan terhadap sudut input berupa sudut lancip yang merepresentasikan belokan tajam (20° - 90° setiap 10°) dan sudut tumpul untuk belokan tidak tajam (120°, 180°, dan 270°). Berdasarkan percobaan, nilai error pada pengujian sudut lancip lebih besar dibandingkan dengan sudut tumpul. Kenaikan nilai error juga meningkat terhadap kenaikan kecepatan putaran rotasi kemudi.

 

The development of autonomous vehicles as a solution for environmentally friendly transportation is currently developing quite fast. This study focuses on closed loop steering system for three wheel autonomous vehicles with unity feedback system using BLDC Motor and Absolute Rotary Encoder. Rotary encoder as a tranducer provides feedback of changing angle position of three wheel autonomous vehicle steering. Steering system that is proposed in this study is to determine the required angle change for the autonomous vehicle. Comparing the desired angle with actual feedback angle value from the rotary encoder that connected to a BLDC motor, so the precise steering angle value can be achieved. The experiments carried out in this research are run with 3 various steering speed rotation; 20 PWM, 50 PWM, and 100 PWM according to input angle; acute angle that represent sharp turn (20° - 90° every 10°) and obtuse angle that represent non-sharp turn (120°, 180°, and 270°). According to the experiment, sharp turn represent input has bigger error rate than non-sharp turn. Error rate is increasing according to steering
rotation speed increament

Downloads

Download data is not yet available.

References

Se-Young Oh and Younguk Yim, “Modeling of vehicle dynamics from real vehicle measurements using a neural network with two-stage hybrid learning for accurate longterm prediction,” pp. 83–88, Jan. 2003, doi: 10.1109/CIRA.1999.809951.

A. Pandey, S. Jha, and D. Chakravarty, “Modeling and control of an autonomous three wheeled mobile robot with front steer,” Proceedings - 2017 1st IEEE International Conference on Robotic Computing, IRC 2017, pp. 136–142, May 2017, doi: 10.1109/IRC.2017.67.

Tyler C. Folsom, “Self-driving Tricycles,” International Symposium on Bicycle Urbanism, Jan. 16, 2013. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HG0jqo0AA AAJ&citation_for_view=HG0jqo0AAAAJ:Se3iqnhoufwC (accessed Oct. 27, 2021).

J. Sindha, B. Chakraborty, and D. Chakravarty, “Rigid body modeling of three wheel vehicle to determine the dynamic stability-A practical approach,” 2015 IEEE International Transportation Electrification Conference, ITEC-India 2015, Jan. 2016, doi: 10.1109/ITEC-INDIA.2015.7386889.

L. Kamelia, E. A. D. Hamidi, W. Darmalaksana, and A. Nugraha, “Real-Time Online Attendance System Based on Fingerprint and GPS in the Smartphone,” Proceeding of 2018 4th International Conference on Wireless and Telematics, ICWT 2018, Nov. 2018, doi: 10.1109/ICWT.2018.8527837.

A. Pandey et al., “Low cost autonomous navigation and control of a mechanically balanced bicycle with dual locomotion mode,” 2015 IEEE International Transportation Electrification Conference, ITEC-India 2015, Jan. 2016, doi: 10.1109/ITECINDIA.2015.7386938.

T. F. Wang, Y. J. Yan, H. C. Chiang, T. L. Chen, and M. Ou-Yang, “Coding optimization for the absolute optical rotary encoder,” 2018 International Automatic Control Conference, CACS 2018, Jan. 2019, doi: 10.1109/CACS.2018.8606741.

Hendri Maja Saputra and LastName; Agam Setiawan, “EKSPERIMEN KENDALI POSISI SUDUT DAN KECEPATAN MOTOR DC BRUSHLESS AXH230KC-100 UNTUK MANIPULATOR ROBOT,” Seminar Nasional Rekayasa Energi, Mekatronik, dan Teknik Kendaraan, pp. 181–188, Sep. 2013, Accessed: Oct. 27, 2021. [Online]. Available: https://www.researchgate.net/publication/277668847_Experiment_for_Position_and_Speed_Control_of_AXH230KC100_Brushless_DC_Motor_for_Robot_Manipulator

P. Bajpai, “Process Control,” Biermann’s Handbook of Pulp and Paper, pp. 483–492, 2018, doi: 10.1016/B978-0-12-814238-7.00024-6.

H. Thomas, “Jetrike.Com - Tadpole or Delta?,” 2007. http://www.jetrike.com/tadpole-ordelta.html (accessed Oct. 27, 2021).

M. Yildirim and H. Kurum, “Electronic Differential System for an Electric Vehicle with Four In-wheel PMSM,” IEEE Vehicular Technology Conference, vol. 2020-May, May 2020, doi: 10.1109/VTC2020-SPRING48590.2020.9129139.

A. Ranpariya, A. Thattil, S. Vachhani, D. Raval, P. Sharma, and U. G. Students, “Design of the Tadpole Type Three Wheel Vehicle with Dynamic Conditions,” International Research Journal of Engineering and Technology, vol. 9001, 2008, Accessed: Oct. 29, 2021. [Online]. Available: www.irjet.net

R. M. Murray, “Optimization-Based Control”. “Brushless DC motor and Driver AXH Series OPERATING MANUAL.” https://www.orientalmotor.com/products/pdfs/opmanuals/HM-5126E.pdf (accessed Oct. 29, 2021).

R. J. Freund, W. J. Wilson, and D. L. Mohr, “Inferences for Two or More Means,” Statistical Methods, pp. 245–320, 2010, doi: 10.1016/B978-0-12-374970-3.00006-8

Published

20-01-2022

How to Cite

[1]
M. . Haniff, H. M. . Saputra, E. A. Z. . Hamidi, M. N. . Firdaus, and S. A. . Pratama, “Pengujian Akurasi Posisi Sudut Sistem Kemudi Kendaraan Otonom dengan Unity Feedback System”, SENTER, pp. 307–318, Jan. 2022.

Viewed

Abstract 245 times
pdf (Bahasa Indonesia) 108 times