Pemodelan ZnO-Quantum Dot (ZnO-QD) menggunakan Metode Extended Hückel
Keywords:
klaster ZnO, Quantum dot, metode extended HückelAbstract
Zinc Oxide (ZnO) merupakan bahan semikonduktor yang berupa senyawa inorganik. ZnO memiliki potensi aplikasi sebagai sensor cahaya, laser dioda, transistor film tipis transparan, dan LED (Light Emitting Diode). Celah energi pada ZnO dapat ditingkatkan dengan memperkecil ukuran partikel dan dikenal sebagai ZnO Quantum Dot (ZnO-QD). Perhitungan celah energi ZnO-QD dengan variasi ukuran klaster ZnO dilakukan dengan menggunakan metode extended Hückel. Hasilnya menunjukkan bahwa semakin kecil ukuran klaster ZnO maka celah energi yang dihasilkan semakin besar.
Downloads
References
L.W. Zhong, Zinc oxide nanostructures: growth, properties and Applications, Journal of Physics : condensed matter 16 (2004) R829–R858.
H.Haberland (ed.), Cluster of Atoms and Molecules, Springer-Verlag, Berlin. 1995.
R. Moreno, B. Ferrari, Nanoparticles Dispersion and the Effect of Related Parameters in the EPD Kinetics. Electrophoretic Deposition of Nanomaterials Nanostructure Science and Technology 2012, Springer, pp 73-128.
A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney. Size Effects in ZnO: The Cluster to Quantum Dot Transition. Australian Journal of Chemistry 56(10) 1051-1057.
B.Debasis, Q.Lei, Teng-Kuan, Paul.H. Quantum Dots and Their Multimodal Aplications :A Rreview. Materials, vol. 3, issue 4, pp. 2260-2345. 2010
J.Daudien, Sintesis Partikel ZnO Terdoping dengan Metode Spray Pyrolisis, Skripsi Program Studi Fisika Material-Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Bandung. 2012
G.G.Hall, Application of Quantum Mechanics in Theoretical Chemistry, Reports on Progress in Physics vol 22 (1959).
I. N. Levine , Quantum Chemistry 5th Edition, Prentice Hall, 2000.
H. Haberland (ed.), Cluster of Atoms and Molecules, Springer-Verlag, Berlin, 1995.
R.E. Siregar, Diktat Kuliah : Mekanika Kuantum Molekul, Fisika Unpad.
J. Daudien, Sintesis Partikel ZnO Terdoping dengan Metode Spray Pyrolisis, Skripsi Program Studi Fisika Material-Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Bandung, 2012.
R.E. Siregar, Diktat Kuliah : Mekanika Kuantum Molekul, Fisika Unpad, 2004.
John P. Lowe, Kirk A. Peterson. Quantum Chemistry, Third Edition. Elesevier Academic Press. London, 2005.
R. Hoffmann, An extended Hückel theory. I. hydrocarbons. J. Chem. Phys. 39 (6) : 1397-1412, 1963.
Thompson, M. A., Software ArgusLab, Tersedia online : http://www.arguslab.com/arguslab.com/ArgusLab.html (diakses pada tanggal 7 Agustus 2012)
M. A. Thompson, M. C. Zerner, Teoritical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas virdis. J. Am. Chem. Soc., 113, 8210-8215, 1991.
Mark A. Thompson, Eric D. Glendening, David Feller. The nature of K+/Crown Ether interactions : A hybrid quantum mechanical-molecular mechanical study. J.Phys. Chem., 98, 10465–10476, 1994.
M. A. Thompson, Gregory K. Schenter. Excited states of the bacteriochlorophyll b dimer of Rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization. J. Phys. Chem., 99 (17), 6374–6386, 1995.
M. A. Thompson. QM/MMpol : A consistent model for solute/solvent polarization. application to the aqueous solvation and spectroscopy formaldehyde, acetaldehyde, and acetone. J. Phys. Chem., 100, 14492 – 14507, 1996.
K.Y. Manoj, G. Manoranjan, Band-gap variation in Mg- and Cd-doped ZnO nanostructures and molecular cluster. Physical Review B 76, 195450, 2007.
D. K. Hwang, M. C. Jeong, J. M. Myoung, Effect of deposition temperature on the properties of Zn1-xMgxO thin films. Applied Surface Science, 225, 217-222, 2004.